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KIF1A is a kinesin family motor involved in the axonal transport
of synaptic vesicle precursors (SVPs) along microtubules (MTs).
In humans, more than 10 point mutations in KIF1A are associ-
ated with the motor neuron disease hereditary spastic paraplegia
(SPG). However, not all of these mutations appear to inhibit the
motility of the KIF1A motor, and thus a cogent molecular expla-
nation for how KIF1A mutations lead to neuropathy is not avail-
able. In this study, we established in vitro motility assays with
purified full-length human KIF1A and found that KIF1A mutations
associated with the hereditary SPG lead to hyperactivation of
KIF1A motility. Introduction of the corresponding mutations into
the Caenorhabditis elegans KIF1A homolog unc-104 revealed ab-
normal accumulation of SVPs at the tips of axons and increased
anterograde axonal transport of SVPs. Our data reveal that hyper-
activation of kinesin motor activity, rather than its loss of function,
is a cause of motor neuron disease in humans.
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Axonal transport along microtubules (MTs) is fundamental
for the development and maintenance of neuronal cells.

Kinesin superfamily proteins (KIFs) are a large family of MT-
dependent molecular motors, some of which are integral in
driving anterograde axonal transport (1, 2). The kinesin-3 family
has been shown to transport a wide variety of cargoes in axons
(3–6). The constituents of synaptic vesicles (SVs) are synthesized
in the cell body and transported to synapses by vesicle carriers
called synaptic vesicle precursors (SVPs) by the kinesin-3 family
motors KIF1A and KIF1Bβ (5, 6). Genetic and cell biological
studies in Caenorhabditis elegans have revealed the basic molecular
mechanism of SVP axonal transport. UNC-104, a founding member
of the kinesin-3 family and a C. elegans ortholog of KIF1A and
KIF1Bβ, was originally discovered in C. elegans through genetic
screening (7, 8). In loss-of-function unc-104 mutants, SVPs are not
properly transported to synapses, leading to abnormal accumulation
of SVs in cell bodies and dendrites (8).
Several kinesin motors are known to be regulated through

autoinhibitory mechanisms (9), and the axonal transport of SVPs
is known to be controlled through autoinhibition of UNC-104/
KIF1A motor activity (10, 11). We previously obtained gain-of-
function unc-104 mutants via suppressor screening of arl-8 mu-
tants (11). These gain-of-function mutations were mapped to the
motor domain, coiled-coil 1 (CC1) domain, and coiled-coil 2
(CC2) domain (10, 12) and appear to lead to constitutive acti-
vation of UNC-104 motor activity (11). In mutant C. elegans that
have gain-of-function unc-104 mutations, the axonal transport of
SVPs is significantly increased. The mutated amino acid residues
that lead to hyperactivation of UNC-104 are well conserved in
mammalian KIF1A, and analogous mutations disrupt the auto-
inhibition of mammalian KIF1A expressed in COS-7 cells (11).

Hereditary spastic paraplegia (SPG) is a human motor neuron
disease associated with mutations in more than 60 genes (13).
Familial mutations in KIF1A have been identified as causes of
SPG (14). In addition to familial SPG, de novo mutations in
KIF1A cause SPG associated with intellectual disabilities (15).
Most KIF1A mutations causing these neuropathies are located
within the conserved motor domain. Because the motor domains
of KIFs convert the energy of ATP hydrolysis into directional
motility along the MT (2), it is thought that disease-associated
mutations in the motor domain most likely disrupt the motile
mechanism of KIF1A and consequently anterograde axonal
transport of SVPs (13, 14, 16). Here we show that, in contrast to
this concept, some disease-associated mutations in KIF1A ac-
tually lead to hyperactivation of motor activity, resulting in
overactive anterograde transport of SVPs. Our results highlight
how proper cellular control over the motile activity of MT-based
motors is essential for neuronal homeostasis in humans.

Results
Not All Disease-Associated Mutations in KIF1A Are Loss of Function.
We noticed that the gain-of-function V6I mutation in unc-104,
identified in our previous C. elegans genetic screen, is equiva-
lent to the dominant SPG-associated mutation, V8M, in human
KIF1A (11, 17) (Fig. 1A and SI Appendix, Fig. S1 A and B). We
thus reasoned that not all disease-associated mutations in human
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KIF1A result in a simple loss of motor activity. To explore this
possibility further, we first performed unc-104 complementation
experiments using human KIF1A cDNA (18) (Fig. 1 B–D). A
loss-of-function allele of unc-104, unc-104(e1265), displayed
strong defects in worm movement on agar plates (Fig. 1 C and
D). When human KIF1A was expressed under the unc-104 pro-
moter, the motility in unc-104(e1265) worms was recovered to
the wild-type (WT) level (Fig. 1 C and D).
Next, we expressed human KIF1A with different disease-

associated mutations in unc-104(e1265) mutant worms. Expres-
sion of KIF1A(S58L), KIF1A(T99M), KIF1A(G199R), KIF1A
(E253K), and KIF1A(R307Q) could not fully rescue the unc-104
mutant phenotype (Fig. 1D). While we believe that these muta-
tions are weak or strong loss of function, it is still possible that they
change KIF1A expression, rather than motor activities, in worms.
Further studies are needed to determine the exact nature of these
mutations. In contrast, expression of KIF1A(V8M) completely
rescued the unc-104 mutant (Fig. 1D), consistent with our initial
hypothesis that KIF1A(V8M) may be a gain-of-function mutant.
Interestingly, expression of KIF1A(A255V) and KIF1A(R350G)
also completely rescued the unc-104(e1265) allele (Fig. 1D).

KIF1AMutations Associated with SPG Hyperactivate the KIF1A Motor.
Behavioral rescue by KIF1A overexpression cannot tell whether
these mutations are gain of function, very weak loss of function,

or not loss of function. To discriminate among these possibilities,
we next performed in vitro single molecule assays (Fig. 2). Pre-
vious studies have shown that CC1 and CC2 bind to the neck
coiled-coil domain and motor domain of KIF1A and inhibit its
binding to MTs (10–12). The landing rate—the number of mole-
cules that bind to MTs normalized by time and MT length—is
related to the ability of the motor domains to have productive
interactions with the MT (10). Thus, if the autoinhibition of KIF1A
is disrupted by disease-associated mutations, the landing rate of
mutant motors on MTs should increase in vitro.
Full-length human KIF1A, KIF1A(V8M), KIF1A(A255V),

and KIF1A(R350G) fused to a C-terminal mScarlet-strepII tag
were expressed in sf9 cells using baculovirus and purified (Fig.
2A). Purified motors were diluted to approximately 1 nM, and
their behavior on MTs was observed using total internal reflec-
tion fluorescence microscopy. We observed processive movement
of purified KIF1A on MTs, but with a relatively low landing rate
(0.002 ± 0.004/μm/s at 1 nM) compared with previous data obtained
by the analysis of purified tail-truncated and constitutively dimer-
ized constructs of KIF1A (10, 19) (Fig. 2 B and C and SI Appendix,
Fig. S2), consistent with the motor existing predominantly in an
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Fig. 1. Complementation of an unc-104 mutant worm by human KIF1A
cDNA. (A) Disease-associated mutations analyzed in this study. Mutations
shown above and below in the KIF1A schematic indicate de novo and fa-
milial mutations, respectively. ID, patients with intellectual disability; no ID,
patients without intellectual disability; SPG, patients with SPG. AD and AR
indicate autosomal dominant and autosomal recessive mutations, respectively.
(See also SI Appendix, Fig. S1.) (B and C ) The phenotypes of unc-104(e1265)
(B) and unc-104(e1265) expressing human KIF1A cDNA with the unc-104
promoter (C ). (Scale bars: 1 mm.) (D) Bar graph showing worm movements.
unc-104(e1265) mutant worms without KIF1A expression (control) exhibit
severe movement defects compared with the WT N2 strain. Ectopic ex-
pression of WT KIF1A, KIF1A(V8M), KIF1A(A255V), and KIF1A(R350G) using the
unc-104 promoter in the unc-104(e1265) background results in WT movement.
Expression of other KIF1A with disease mutations (S58L, T99M, G199R, E253K,
and R307Q) do not fully rescue unc-104(e1265) mutant worms. Asterisks indi-
cate that the velocity is statistically not different from that of WT, indi-
cating complete rescue (Tukey’s multiple comparison test). n = 60 worms for
each genotype.
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Fig. 2. Single molecule motility assay in solution. (A) Coomassie blue-
stained gel showing the purity of recombinant, full-length human KIF1A
proteins. The arrow denotes the full-length protein (230 kDa). (B) Repre-
sentative kymographs showing the motility of purified KIF1A::mScarlet along
MTs in vitro. (Scale bars: vertical, 5 s; horizontal, 10 μm.) (C) Representative
images showing KIF1A::mScarlet particles (magenta) on MTs (green). Wt, WT
KIF1A; V8M, KIF1A(V8M); A255V, KIF1A(A255V); R350G, KIF1A(R350G).
(Scale bar: 10 μm.) Note the strong increase in the number of mutant KIF1A
molecules bound to MTs compared with the WT motors. (D) Landing rates
of purified WT and mutant KIF1A motors: 0.002 ± 0.004/μm/s 1 nM KIF1A,
0.012 ± 0.007/μm/s for 10 nM KIF1A, 0.039 ± 0.012/μm/s for 1 nM
KIF1A(V8M), 0.024± 0.008/μm/s for 1 nM KIF1A(A255V), and 0.025 ± 0.008/μm/s
for 1 nM KIF1A(R350G). Lines show mean ± SD values, and each dot repre-
sents 1 counted molecule. n = 27 MTs from at least 3 trials per condi-
tion. ****Adjusted P < 0.0001 compared with WT KIF1A, Kruskal–Wallis
1-way ANOVA on ranks and Dunn’s multiple comparisons test. (E) Histograms
showing the velocity of KIF1A mutants: 0.77 ± 0.48 μm/s for WT KIF1A, 1.6 ±
0.70 μm/s for KIF1A(V8M), 0.54 ± 0.35 μm/s for KIF1A(A255V), and 2.6 ± 0.85 μm/s
for KIF1A(R350G), mean ± SD. n = 143, 260, 203, and 196 molecules, respec-
tively, in >20 trials. ****Adjusted P < 0.0001 compared with WT KIF1A, 1-way
ANOVA followed by Dunnett’s multiple comparison test. (See also SI Appen-
dix, Fig. S2.)
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autoinhibited and possibly monomeric state (10, 12, 20). In contrast,
full-length KIF1A(V8M), KIF1A(A255V), and KIF1A(R350G)
showed significantly elevated landing rates compared with the WT
motor (Fig. 2 B–D). KIF1A(V8M) had the highest landing rate
(∼20-fold higher compared with WT), while KIF1A(A255V) and
KIF1A(R350G) were activated to a lesser extent (∼10-fold less
compared withWT) (Fig. 2D). While the velocity of KIF1A(A255V)
was comparable to that of WT KIF1A, the velocity of KIF1A(V8M)
and KIF1A(R350G) was ∼2- and 3-fold faster, respectively, than
that of WT KIF1A (Fig. 2E), suggesting that either these muta-
tions relieve the autoinhibitory mechanisms to various degrees or
confer a gain-of-function increase in velocity. These data, together
with the results from the rescue assays (Fig. 1), indicate that V8M,
A255V, and R350G are gain-of-function rather than loss-of-
function KIF1A mutations.

Establishment of SPG Model Worms. To show that the autosomal-
dominant SPG (ADSPG) mutation (V6M, corresponding to
human V8M) and the autosomal-recessive SPG (ARSPG) muta-
tion (A252V, corresponding to human A255V) activates C. elegans
UNC-104, as is the case for human KIF1A, the localization of
UNC-104::GFP with these mutations was observed in live C. elegans
(Fig. 3 A–C and SI Appendix, Fig. S3). UNC-104::GFP specifically
expressed in mechanosensory neurons was diffusely localized to
neuronal cell bodies, proximal axons, and distal axons (Fig. 3B). In
contrast, both UNC-104(V6M)::GFP and UNC-104(A252V)::GFP
strongly accumulated in the distal part of anterior lateral MT
(ALM) neurons in vivo (Fig. 3 A–C and SI Appendix, Fig. S3). Only
a very dim fluorescent signal was detected in the proximal region of
UNC-104(V6M)::GFP and UNC-104(A252V)::GFP neurons (Fig.
3B and SI Appendix, Fig. S3). This distal accumulation of mutant
motors also has been observed in constitutively active KIF1A and
UNC-104 in mammalian and worm cells (10, 11).
We established SPG model worms by introducing the corre-

sponding human mutations into worm UNC-104 using genome
editing (SI Appendix, Fig. S4 A and B). We refer to the edited unc-
104(V6M) and unc-104(A252V) strains as unc-104(ADSPGV6M)
and unc-104(ARSPGA252V), respectively. First, worm movement
was analyzed by counting the number of body bends in M9 buffer.
We observed that young mutant worms (4 d old) did not show
overt motility defects, but in older worms (10 d old), body
movement was reduced by both disease mutations (Fig. 3D).
Second, to test for presynaptic defects, we performed an aldicarb

resistance assay (21). Aldicarb is an acetylcholine esterase inhibitor,
and exposure of worms to aldicarb causes an accumulation of
acetylcholine in the synaptic cleft, resulting in muscle excitation and
paralysis. Mutants with presynaptic defects are more resistant to
aldicarb, because defects in synaptic transmission cause reduced SV
exocytosis and slower accumulation of acetylcholine in the synaptic
cleft. We consistently observed that both unc-104(ADSPGV6M) and
unc-104(ARSPGA252V) worms were more resistant to aldicarb com-
pared with WT worms (Fig. 3E and SI Appendix, Fig. S4 C and D),
indicating that human disease-associated mutations in unc-104 cause
presynaptic defects.

Abnormal Accumulation of SVs in the Distal Axon in SPG Model
Worms. ALM neurons have a long axon with a single branch
that extends to the nerve ring. Synapses are formed along this
axon branch that can be visualized by the SV marker SNB-1::GFP
expressed under the mec-7 promoter (22) (Fig. 4A). No SV ac-
cumulation was seen in the tip of the primary neurite in WT
worms (Fig. 4 A and B). In contrast, adult worms harboring
the ADSPG and ARSPG mutations often displayed abnormal
accumulation of SVs at the tip of the primary neurite (Fig. 4 C–
G, arrows). This phenotype was similar to (albeit less severe
than) that of loss-of-function dynein mutants (Fig. 4 F and G).
Moreover, the phenotype was age-dependent. At the larval 4
(L4) stage, no aberrant accumulation of SVs was observed in

unc-104(ADSPGV6M) or unc-104(ARSPGA252V) worms (SI Ap-
pendix, Fig. S5), suggesting that the phenotype in adult worms
results from a slow accumulation over time.

Synaptic Morphology Is Affected in Dorsal Synapses in SPG Model
Worms. Worm motor neurons in the dorsal nerve cord have en
passant synapses. We visualized these synapses in the DA9 mo-
tor neuron using a DA9-dominant promoter, itr-1, and an SV
marker, GFP::RAB-3 (wyIs85[Pitr-1::gfp::rab-3]) (11) in both
unc-104(ADSPGV6M) and unc-104(ARSPGA252V) worms (Fig. 4
H–J and SI Appendix, Fig. S6 A–C). First, we found that the
length between synapses is longer in these disease models (Fig. 4
H and I and SI Appendix, Fig. S6 A–C), similar to previously
characterized gain-of-function mutants of unc-104 (11). Second,
we noticed that the fluorescent intensity of GFP::RAB-3 in
dorsal synapses is dimmer in unc-104(ADSPGV6M) and unc-
104(ARSPGA252V) compared with WT (Fig. 4J). To confirm this
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Fig. 3. Conservation of disease-associate residues and establishment of
disease models. (A) Residues mutated in AD and AR hereditary SPG are
conserved in human KIF1A and worm UNC-104. (See also SI Appendix, Fig.
S1B.) (B and C) Localization of UNC-104::GFP (UNC-104), UNC-104(V6M)::GFP
(V6M), and UNC-104(A252V)::GFP (A252V) in the ALM neuron in vivo. (B)
Representative images of proximal and distal regions of the ALM neuron. CB,
cell body. (Scale bars: 10 μm.) (C) Mean fluorescent intensity in the cell body
and distal axon was measured, and the intensity of cell body:intensity of distal
axon ratio was calculated in UNC-104::GFP (wt), UNC-104(V6M)::GFP(V6M),
and UNC-104(A252V)::GFP (A252V) expressed in the ALM neuron. n = 20 cells
from 20 transgenic animals. Data are mean ± SD. ****Adjusted P < 0.001
compared with WT control, 1-way ANOVA followed by Dunnett’s multiple
comparison test. Whole-cell images are shown in SI Appendix, Fig. S3. (D) Body
bending assay. The number of body thrashings in M9 buffer in a 1-min ob-
servation period were counted in WT N2 (N2), unc-104(ADSPGV6M) (V6M), and
unc-104(ARSPGA252V) (A252V) young adult worms (4 d after hatching) and old
adult worms (10 d after hatching). Each dot represents an animal. Data are
mean ± SD. **Adjusted P < 0.01, ****adjusted P < 0.0001, 1-way ANOVA
followed by Tukey’s multiple comparison test. n = 50 worms for each geno-
type. (E) 4-d-old WT, unc-104(ADSPGV6M), and unc-104(ARSPGA252V) worms
were transferred to agarose plates containing 1 mM aldicarb, and worm via-
bility was monitored and plotted. A representative result of 3 independent
assays is shown. (See also SI Appendix, Fig. S4.)
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phenotype, we analyzed the synapses in the dorsal nerve cord by
electron microscopy (Fig. 5 A–C and SI Appendix, Fig. S6 D–F).
To analyze the number of SVs, the length of active zones and

the volume of synaptic boutons, 100 continuous ultrathin sec-
tions were observed. Consistent with the reduced GFP::RAB-3
signals in synapses (Fig. 4J), the number of SVs in each synapse
was significantly reduced in unc-104(ADSPGV6M) compared with
WT (Fig. 5 A–C); however, synaptic volume and length of the
active zone in unc-104(ADSPGV6M) were not significantly affected
(SI Appendix, Fig. S6 D–G). These data are consistent with the
results of aldicarb assays and a model in which overactive UNC-104

motility leads to reduced SVs in en passant synapses in worm motor
neurons.

Human Disease Mutations Lead to Aberrant Activation of SVP
Transport. In mutant worms that lack ARL-8, UNC-104 motor
activity is not properly activated (11). As a result, SVs accumulate
abnormally in the commissure and proximal asynaptic region of the
DA9 axon due to reduced anterograde transport (23, 24) (Fig. 6 A–C).
This phenotype is suppressed by gain-of-function mutations in unc-
104, which disrupt the autoinhibition of UNC-104 (11).
To test whether ARSPG and ADSPG mutations lead to a

similar gain of function, we generated arl-8; unc-104(ARSPGA252V)
and arl-8; unc-104(ADSPGV6M) double-mutant worms (Fig. 6 D–I).
Both unc-104(ARSPGA252V) and unc-104(ADSPGV6M) mutations
suppressed the aberrant localization of SVs observed in arl-8 mu-
tants (Fig. 6 D, E, and G–I). unc-104(ADSPGV6M) heterozygotes
also suppressed the arl-8 mutant phenotype (Fig. 6 F–I), indicating
the dominant nature of the V6M mutation. The arl-8; unc-
104(ARSPGA252V)/+ phenotype was comparable to the arl-8 sin-
gle mutant (Fig. 6 G–I), indicating that a heterozygous A252V
mutation cannot completely suppress the mislocalization of SVs.
These data indicate that both unc-104(ARSPGA252V) and unc-
104(ADSPGV6M) mutations lead to activation of the UNC-104
motor even in the absence of the UNC-104 activator ARL-8,
resulting in increased axonal transport of SVPs.

Increase in Anterograde Transport of SVPs in SPG Model Worms.
Finally, we analyzed the axonal transport of SVPs in SPG
model worms by time-lapse microscopy of GFP:RAB-3 in the
asynaptic ventral region of the DA9 neuron (24) (Fig. 7 and SI
Appendix, Fig. S7). First, the velocity of the anterograde trans-
port was faster in unc-104(ADSPGV6M) worms compared with
WT worms, but the velocity of anterograde transport was com-
parable in unc-104(ARSPGA252V) and WT worms (Fig. 7 A and B).
These data are consistent with results from single molecule anal-
ysis showing that the velocity of recombinant KIF1A(V8M) is faster
than that of WT KIF1A, while the velocity of KIF1A(A255V) is
similar to that of WT (Fig. 2).
The frequency of anterograde transport was increased in both

AD and AR model worms (Fig. 7C). In contrast, the frequency of
retrograde transport of SVPs was reduced in unc-104(ADSPGV6M)
and unc-104(ARSPGA252V) strains (Fig. 7D). Previous studies have
shown that the amount of axonal transport is determined by the
dissociation rate and capture rate at vesicle pools along the axon
(24). In axonal transport, vesicles are occasionally dissociated from
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The large and small dotted boxes delineate the areas shown in B–D and E,
respectively. (B–E) Representative images of the head region (B–D) and the
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(F) Quantification of the phenotype in each animal. Young adult worms were
scored. n = 40. (See also SI Appendix, Fig. S5.) (G) Quantification of the size of
SNB-1::GFP puncta at the tip of axons in WT, unc-104(ADSPGV6M) heterozy-
gote, unc-104(ADSPGV6M) homozygote, unc-104(ARSPGA252V) heterozygote,
unc-104(ARSPGA252V) homozygote, dhc-1 homozygote, and dnc-1 homozy-
gote. Only axonal tips showing the aberrant accumulation phenotype in F
were compared. All data are plotted along with mean ± SD values. WT and
unc-104(ARSPGA252V) heterozygote were not statistically analyzed because
of no accumulation. ****Adjusted P < 0.0001. (H–J) Synaptic phenotype of
DA9 neurons. Stably integrated marker wyIs85 was used. (H) Line scan
images of DA9 neurons. Ten DA9 neurons from independent animals
were scanned and aligned. (Scale bar: 5 μm.) Representative synaptic
images in the worm body are shown in SI Appendix, Fig. S6 A–C. (I) Plots
of intersynaptic distances. Each dot represents each intersynaptic distance. n =
60 intersynapses from 3 independent animals. Data are mean ± SD. **Ad-
justed P < 0.01, Tukey’s multiple comparison test. (J) Mean fluorescent in-
tensity of each dorsal synapse. Data are mean± SD. *Adjusted P < 0.05, Tukey’s
multiple comparison test. n = 102, 102, and 87 synapses from 5 independent
animals in WT, unc-104(ADSPGV6M), and unc-104(ARSPGA252V), respectively.
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vesicle pools along the axon. The number of events was counted and
analyzed (Fig. 7E); however, the dissociation rate was not signifi-
cantly affected in unc-104(ADSPGV6M) and unc-104(ARSPGA252V)
strains. When moving vesicles reach stationary vesicle pools
along the axon, they are either captured or pass through the
stationary pool. We assessed the probability of capture events in
our data (Fig. 7F) and found that a decreased capture rate in
both disease model strains, suggesting overactive axonal transport
in the mutant axons. Taken together, our data indicate that
mutant UNC-104 motor activity is hyperactive, resulting in in-
creased anterograde transport of SVPs in disease model axons.

Discussion
Mutations in the motor domain of KIF1A are associated with
numerous neuronal diseases, including both pure and compli-
cated SPG as well as intellectual disabilities (15–17). However,
why different mutations cause different types of diseases remains
unclear. Previous studies, along with the data presented here, sug-
gest that KIF1A mutations that cause complicated SPG with in-
tellectual disabilities are loss-of-function mutations (16, 25) (Fig. 1).

In contrast, KIF1A(V8M), KIF1A(A255V), and KIF1A(R350G)
cause overactivation of KIF1A motor activity in vitro and are
associated with pure or complicated SPG without intellectual
disabilities, suggesting that gain-of-function mutations cause
milder neuropathies. Consistent with human symptoms, the neuro-
nal phenotype of unc-104(ADSPGV6M) and unc-104(ARSPGA252V)
shown here in worms is weaker than that of loss-of-function
unc-104 mutants. Although the loss-of-function allele of unc-104
shows very strong motility defects (Fig. 1D), unc-104(ADSPGV6M)
and unc-104(ARSPGA252V) worms can still move on agar plates
(Fig. 3D), while these mutants have behavioral and morphological
defects (Figs. 3 D and E, 4, and 5).
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Fig. 6. SPG mutations suppress the arl-8 phenotype. (A) Schematic drawing
of the DA9 neuron, showing the dorsal asynaptic region and the commissure
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used. Asterisks indicate the commissure bend shown in A. (Scale bars: 50 μm.)
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the median, and each dot represents 1 animal. Numbers above show actual
median values. **Adjusted P < 0.01, ****adjusted P < 0.0001 compared with
arl-8, Kruskal–Wallis 1-way ANOVA on ranks and Dunn’s multiple comparisons
test. n = 30 animals for each genotype.
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axon length and time. Vesicles that moved >1 μm in 1 min are included.
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Dunn’s multiple comparisons test. Actual adjusted P values are 0.0008 (WT
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3 worms.
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In vitro experiments suggest that an autoinhibitory mechanism
that regulates MT binding (10) is disrupted by these mutations.
The landing rate of KIF1A(V8M) was much higher than the
rates of KIF1A(A255V) and KIF1A(R350G) in vitro (Fig. 2 A–
D). This may explain the AD nature of KIF1A(V8M) and the
AR nature of KIF1A(A255V) and KIF1A(R350G). Because the
activity of KIF1A(V8M) is very high, even heterozygous muta-
tion induces neuropathy. Moreover, the velocities of KIF1A(V8M)
and KIF1A(R350G) were faster than the velocity of WT KIF1A
(Fig. 2E). Consistent with this, anterograde transport was faster
in unc-104(ADSPGV6M) worms compared with WT worms. The
molecular mechanism for these velocity changes remains unclear,
but the mutations could conceivably alter the motor enzymatic
rate or lead to varying degrees of release of the autoinhibition
mechanisms.
Interestingly, a previous study did not detect defects in the

motor activity of KIF1A(A255V) (16). This result is reasonable,
because the study used a deletion mutant of KIF1A that lacked
the entire tail domain and thus any autoregulatory elements.
Moreover, in MT-gliding assays, motors are attached to a glass
surface, which can force motors into their active conformations
(26). Here we analyzed full-length KIF1A by single-molecule
motility assays in solution, which made it possible to detect de-
fects in KIF1A autoregulation. (A further discussion on KIF1A
motility is provided in SI Appendix, Supplementary Note).
Previous studies have found disease-associated mutations in

KIF21A and dynein-binding protein BICD2 to be gain of func-
tion rather than loss of function (27–29). KIF21A is a member of
the kinesin-4 family, which regulates MT polymerization. Gain-
of-function mutations in KIF21A cause congenital fibrosis of
extraocular muscle type 1 (CFEOM1). Disease-associated mu-
tations hyperactivate KIF21A and inhibit MT polymerization in
neurons (27, 28). BICD2 activates cytoplasmic dynein to preform

retrograde axonal transport (30, 31). Mutations in BICD2 are
associated with the motor neuron disease, spinal muscular atrophy,
and mutant BICD2 proteins hyperactivate the motility of dynein
(29). Thus, overly active MT-based transport in either direction
leads to neurodegeneration, highlighting the importance of a
proper balance of motor activity for neuronal health.

Materials and Methods
Detailed descriptions of all materials and methods used in this study are
provided in SI Appendix, Materials and Methods.

Worm Genetics and Transformation. The strains and vectors used in this study
are listed in SI Appendix, Tables S1 and S2. To visualize UNC-104::GFP in ALM
neurons (Fig. 3), antibiotic selection with Nourseothricin was performed as
described previously (32). Disease model worms were established by genome
editing as described previously (33).

Light Microscopy. Worms were analyzed by light microscopy as described
previously (24). Steady-state imaging was obtained using an inverted Carl
Zeiss Axio Observer Z1 microscope equipped with a 40×/1.4 objective and an
LSM710 confocal scanning unit (Fig. 5) or LSM 800 confocal scanning unit
(Figs. 3 and 4 and SI Appendix, Figs. S3 and S6). Time-lapse imaging was
provided by an inverted Carl Zeiss Axio Observer Z1 microscope equipped
with a Plan-Apochromat 100×/1.4 objective and a Hamamatsu ORCA flash v3
sCMOS camera. Movies were taken at 5 fps for 1 min and analyzed using Fiji
software as described previously (34).
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